

Beyond Spitzer

(Pasadena, June 2004)

Infrared Radiation from the First Stars

Volker Bromm

Space Telescope Science Institute

From the Dark Ages to the Cosmic Renaissance

First Stars → Transition from Simplicity to Complexity

Why Study Population III (=First Stars)?

- The Quest for our Origins
- Importance for Cosmological Structure Formation
 - Reheat / Reionize the Universe
 - Feedback effects on IGM
 - Initial enrichment with metals
 - → Pure H/He out of BBNS
 - → Need stars to synthesize heavy elements
 - Pop III remnants
 - → Baryonic DM (?)
- Upcoming Observations
 - CMB anisotropy probes (WMAP / Planck)
 - → Study imprint of first stars
 - IR missions (SIRTF/ JWST)
 - Direct imaging

Hierarchical Structure Formation:

Merger tree

Z=20

Variant of CDM

 Typical mass scale of collapsed objects increases with time

Z=0

(Beasley et al. 2002, MNRAS, 333, 383)

Region of Primordial Star Formation

- Gravitational Evolution of DM
- Gas Microphysic:
 - Can gas sufficiently cool?
 - t_{cool} < t_{ff} (Rees-Ostriker)

- Collapse of First Luminous Objects expected:
 - at: $z_{coll} = 20 30$
 - with total mass: $M \sim 10^6 M_{\odot}$

How massive were the First Stars?

Massive Black Hole

Cluster of Stars

Previous estimates: $1 M_o < M_{PopIII} < 10^6 M_o$

The Physics of Population III

- Simplified physics
 - No magnetic fields yet (?)
 - No metals → no dust
 - Initial conditions given by CDM
 - → Well-posed problem
- Problem:
 - How to cool primordial gas?
 - No metals → different cooling
 - Below 10⁴ K, main coolant is H₂

T_{vir} for Pop III

- H₂ chemistry
 - Cooling sensitive to H₂ abundance
 - H₂ formed in non-equilibrium
 - → Have to solve coupled set of rate equations

Simulating the Formation of the First Stars:

(Bromm, Coppi, & Larson and Bromm & Hernquist)

- Use TREESPH / Gadget (both DM and gas)
- Radiative cooling of primordial gas
- Non-equilibrium chemistry
- Initial conditions: ΛCDM
- Modifications to SPH:
 - sink particles
 - particle splitting

Cosmological Initial Conditions

• Consider situation at z = 20

Gas density

Primordial Object

~ 7 kpc

The First Star-Forming Region

~ 7 kpc

Formation of a Population III Star

1 kpc (see also Bromm, Coppi, & Larson 1999, 2002)

A Physical Explanation:

- Gravitational instability (Jeans 1902)
- Jeans mass:
 M_J~T^{1.5} n^{-0.5}

Thermodynamics of primordial gas

M_J vs. n

- •Two characteristic numbers in microphysics of H₂ cooling:
 - $-T_{min} \sim 200 \text{ K}$
 - $n_{crit} \sim 10^3$ 10^4 cm⁻³ (NLTE \rightarrow LTE)
- Corresponding Jeans mass: M_J ~ 10³ M_o

A Tale of Two Timescales

Consider the cooling and freefall times:

<u>Timescale vs. n</u>

- Gas particles loiter at: n ~ 10³ 10⁴ cm⁻³
 - $t_{cool} \sim t_{ff}$
 - Quasi-hydrostatic phase
- Runaway collapse occurs
 - s.t. $t_{cool} \sim t_{ff}$

The Crucial Role of Accretion

Final mass depends on accretion from dust-free

Envelope

The Crucial Role of Accretion

- Final mass depends on accretion from dust-free Envelope
- Development of core-envelope structure
 - Omukai & Nishi 1998, Ripamonti et al. 2002
- M_{core} ~ 10⁻³ M_o → very similar to Pop. I
- $dM/dt_{acc} \sim M_J/t_{ff} \sim T^{3/2}$ (Pop I: T ~ 10 K, Pop III: T ~ 300 K)
- •Can the accretion be shut off in the absence of dust?

Protostellar Collapse

Bromm & Loeb 2004, New Astronomy, 9, 353

Simulate further fate of the clump

Accretion onto a Primordial Protostar

dM/dt vs. time

M vs. time

Upper limit:

 $M_* (t = 3 \times 10^6 \,\text{yr}) \approx 500 M_{\odot}$

Population III Star Formation

- Numerical simulations
 - Bromm, Coppi, & Larson (1999, 2002)
 - Abel, Bryan, & Norman (2000, 2002)
 - Nakamura & Umemura (2001)
- Main Result: → Top-heavy IMF

Probing the First Stars with SAFIR:

- Launch in ~2020
- Exquisite sensitivity from mid-IR to mm
- 10 20m aperture

→ Can probe H₂ emission from high z

H2 emission during Pop III Formation

Peak luminosity during accretion phase

H2 emission from First Stars

(Mizusawa, Nishi, & Omukai 2004, PASJ in press)

H2 line luminosity vs. time

time

- initial collapse: pure rotation (~10mu) → FIR
- accretion phase: rovibrational (~3mu) → 50mu

Probing the Birth of Pop III stars

Predicted H2 line flux vs. redshift

Need > 10⁶ stars

Can a massive Pop III cluster form?

The First Supernova Explosions

(Bromm, Yoshida & Hernquist 2003, ApJ, 596, L135)

HII Regions around the First Stars

The First Supernova-Explosion

Gas density

- E_{sn}~10⁵³ergs
 - Complete Disruption (PISN)

~ 1 kpc

First Stars and Cosmic Near-IR Background

(Santos, Bromm, & Kamionkowski 2002, MNRAS, 336, 1082)

First Stars and Cosmic Near-IR Background

Flux vs. wavelength

- Essential features:
 - Broad: optical → mid-IR
 - Most stellar photons
 - → reprocessed → NIR
- NIR/mid-IR background
 - → probe of first stars:
 - escape fraction
- end of Pop III SF epoch (z > 7)

Summary

Primordial gas typically attains:

```
- T \sim 200 - 300 K
- n \sim 10<sup>3</sup> - 10<sup>4</sup> cm<sup>-3</sup>
```

- Corresponding Jeans mass: M_J ~ few x 10² M_o
- Pop III SF might have favored very massive stars
- Detecting H2 emission from formation process challenging
- PISNe completely disrupt mini-halos and enriches surroundings
- Cosmic infrared background sensitive probe of first stars

Cosmic Star Formation History

(Mackey, Bromm & Hernquist 2003, ApJ, 586, 1)

Comoving SFR vs. redshift

- 2 modes of SF:
 - Pop III → VMS
 - Pop I / II → normal stars
- Pop III SF possible in halos with:
 - T_{vir} < 10⁴ K→ molecular cooling
- T_{vir} > 10⁴ K → atomic H cooling

(Springel & Hernquist 2003)

Early Reionization of the Universe

(Yoshida, Bromm & Hernquist 2004)

Photons per H atom vs. redshift

The Pop III → Pop II Transition

(Yoshida, Bromm & Hernquist 2004)

IGM Metallicity vs. redshift

The Death of the First Stars:

(Heger et al. 2002)

Z

Pop III

Initial Stellar Mass

Wilkinson Microwave Anisotropy Probe:

Polarization — optical depth to Thomson scattering:

 $(\tau = 0.17 \pm 0.04)$ — Signature of the First Stars

CMB photon-scattering from free electrons

Relic from the Dawn of Time:

• **HE0107-5240**: [Fe/H] = - 5.3 (Christlieb et al. 2002)

How could such a low-mass star have formed?

Forming the First Low-mass Stars:

(Bromm & Loeb 2003, Nature 425, 812)

- Abundance pattern:
- HE0107-5240
- very Fe-poor
- very C/O-rich
- Pop III → Pop II:
- driven by: CII, OI (fine-structure transitions)
- Minimum abundances:
- [C/H] ~ -3.5
- $-[O/H] \sim -3.1$
- Identify truly 2nd gen. stars!

